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THEOREM: Let A and B be complex C*-algebras with identities 1, and 1,
respectively. Let (¢,) be a sequence of positive linear maps with ¢,(1,) < 1, from 4
to B, and ¢ a C*-homomorphism from A to B. Then C= {a € 4: ¢,(a) - ¢(a),
@,(a*oa)- g(a* o a)} is a norm-closed *subspace of 4 and is closed under the
Jordan product a o b= (ab + ba)/2 in A. If all ¢, and ¢ are Schwarz maps, then C
is, in fact, a C*-subalgebra of 4. Here — denotes the operator norm convergence, or
the weak operator convergence, or the strong operator convergence. A modification
of this theorem for convergence in the trace morm is also considered. Various
examples are given to illustrate the theorem.

For a complex C*-algebra 4 with identity 1, and a sequence (g,) of
positive linear maps from A4 to 4 with ¢,(1,) < 1,, Priestley proved in [5]
that the set

{a € 4:,(a) > a, 6,(@®) » &%, §,(a* 0 @) > a* o a)

is a J*-subalgebra of 4 (i.e., a norm-closed *subspace of A which is closed
under the Jordan product a o b = (ab + ba)/2), where — denotes convergence
in the operator norm topology, or in the weak or strong operator topologies.
Later, Robertson proved in [6] that if each ¢, is a Schwarz map (i.e.,
d.(a)* ¢,(a) < ¢,(a*a) for all a € 4), then the set

la€4:4,(a)- a, §,(a%a) ~> a*a, ¢,(aa*) - aa*}

is, in fact, a C*-subalgebra of 4, where — denotes the operator norm con-
vergence.

The purpose of the present paper is to improve (i) Priestley’s result by
dropping the condition ¢,(a*)— a’ in it, and also (i) Robertson’s result by
replacing the conditions ¢,(a*a) —» a*a, ¢,(aa*)— aa* in it by the condition
¢,(a* o a)— a* o a. Our results are deduced from a preliminary theorem of
Priestley which we shall quote later.
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Also, we shall work in a more general situation. Throughout this note, 4
and B will denote complex C*-algebras with identities 1, and 1,, respec-
tively. A *linear map ¢: 4 - B is called a C*-homomorphism if ¢(a o b) =
d(a) o ¢(b) for all a, b in A. C*-homomorphisms are important because they
preserve the quantum mechanical properties of the C*-algebras. We consider
an approximation of a C*-homomorphism ¢: 4 -+ B by a sequence of
positive linear maps ¢,:4 —» B satisfying ¢,(1,) < 1;. Unless otherwise
stated, — will denote convergence in the operator norm topology, or in the
weak or strong operator topologies.

We begin by proving a convergence result for the C*-algebra f(H) of all
bounded operators on a complex Hilbert space H.

Lemma 1. Let (S,), (T,), (U,) and (V,) be sequences in B(H) such that
Jfor all n,

SkS, < U, and T*T, <V,.

If S, TE€ B(H) and
S 8, T,»T, U, +V,—S*S+T*T,

n n

then

Uu,- S*S and vV, T*T,

where — denotes either the operator norm convergence or the weak operator
convergence.

If — denotes the strong operator convergence, then this result is false in
general, but remains true in the following two special cases: (i) S, and T,
are self-adjoint for all n, (ii) T* =S, for all n.

Proof. For all n,

_(S3S, — S*S) — (T*T, — T*T).

If we show that S, - S*S and T}T,— T'*T, then the right side of the
above equality tends to zero. But for each n the left side is the sum of two
positive operators so that U, — S*S,~»0and V,— T}T,- 0; ie., U,—» S*S
and V, - T*T.

If —» denotes the operator norm convergence, then since S,— S and
T,~ T it is obvious that S*S, » S*S and T}T,— T*T. '
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Let, now, — denote the weak operator convergence. Fix x € H. Then

15,00) = SEI? + 1 T,(x) — T
= ((SES, + TET,)(x), x) + (S*S + T*T)(x), x)
— 2 Re(S(x), 5,(x)) — 2 Re(T(x), T,,(x))
< (U, + V), %) + (S*S + THT)(x), x)
— 2Re(S(x), S,(x)) — 2 Re(T(x), T, (x)),

which tends to zero. Hence ||S,(x)—S(x)|—-0 and ||T,(x)— T(x)| 0.
Now,

(88,(x), x) =[S, (X)* ~ | SCII* = (S *S(x), x).

Since x € H is arbitrary, we see that S*S,— S*S, and similarly 77T, >
T*T.

If — denotes the strong operator convergence, the statement of the lemma
is false as the following example shows. Let H =[*, the Hilbert space of
square-summable complex sequences, and L denote the unilateral left shift
operator on /%, Define S, =1—L", T,=1+L", U,=S}¥S,and V,=T}T,.
Then it can be readily seen that S,-1, T,-1 and U,+V,=
2(I + L*"L") - 2I strongly, but U, does not tend to 7 strongly. If, however,
all §, and T, are self-adjoint, then clearly S*S,=52-S>=S*S and
similarly T}T,— T*T. Again, if T} =S, for each n, then §¥S,=7,5,-
TS =S*S and T*T,=S,T,— ST=T*T, and we are back in business. §}

We now state the preliminary theorem of Priestley from which our resuits
will be deduced. Although he proved it for the special case 4 = B and ¢
equal to the identity map, his proof works equally well in the general
situation.

THEOREM (Priestley |5, Theorems 1.1 and 2.1]). The set
J={a€Ad:a*=a,¢,(a)~ ¢(a), ,(a’) > §(a®)}
is a Jordan subalgebra of self-adjoint elements of A.

THEOREM 2. The set

C={a€4:¢,(a)- ¢a), 9,(a* o a) - ¢(a* o a)}

is a J*-subalgebra of A.
If ¢ and all ¢, are Schwarz maps, then C is, in fact, a C*-subalgebra of A.
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Progf. To show that C is a J*-subalgebra of 4, it is enough to prove, by
Priestley’s theorem, that C=J + iJ. Since C obviously contains J + iJ, we
only have to show that if e € C and a = q, + ia, with a}f =a,, af = a,, then
a,,a,€J.

For all n, let S,=¢,(a,), T,=¢,(a,), U, = ¢,(a%) and V, = ¢,(a?). Then,
by Kadison’s inequality {3],

S¥S,=8u=4¢,(a)’ <,(a})=U,,
and similarly, T}T, < V,. Also, since a € C and C is *closed, we see that
S, ¢a)=S,T,>¢a,)=T, and
Uy + V,=64(at +a})=¢,(a* o a)> g(a* oa) = §*S + T*T.
Hence, by Lemma 1,
U, = ¢u(ai)—> S*S = ¢(a,)* = ¢(a})

and
Vo= 9a(a3) » T*T = §(a,)* = ¢(a3).

Thus, a,,a, €J so that C=J + iJ is a J*-subalgebra of 4.

Next, let ¢ and ¢, be Schwarz maps. Since ¢ is also a C*-homomorphism,
it follows that (Corollary 1, p. 270 of {4]) ¢ is, in fact, a *homomorphism.
To show that C is a C*-subalgebra of A, it is enough to prove that if
a,,a, € C with af =a, and af = a,, then a,a, € C. Let a = a, + ia,. Since

2a,a, = (2a, ¢ a, + i(a} + a} — a*a))
and since C is a J*-subalgebra, we need only prove that a*a € C.
For all n, let S, =T} =¢,(a), U,=4¢,(a*a) and V, = ¢,(aa*™). Since ¢, is

Schwarz, S*S,< U, and T}T,<V,. Now a€C since C is a J*-
subalgebra. Thus, S, —» ¢(a)=S, T, > ¢(a*) =T and

U, + V,=¢,(a*a + aa*) =2 ,(a* o a) » 2¢(a* o a)
=2¢(a*) o §(a) = §*S + T*T.
Hence, by Lemma 1,
pu(a*a)= U, §*S = ¢(a)* ¢(a) = d(a*a),
and

$q(@a*)=V,— T*T = ¢(a) p(a)* = ¢(aa™).
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Again, since a belongs to the J*-subalgebra C, we see that
a*aa*=2a*o (@*oca)— (@*oa*)oa

as well as go(e*aa*) belong to C. Therefore, ¢,(ao (a*aa*))—
é(a o (a*aa*)). But

2a o (@*aa*) = (a*a)’ + (aa*)™.

Now, letting S,=g,(a%a), T,=g,(aa*), U,=9,((a*a)}) and V,=
#.((@aa*)?) in Lemma 1, and noting that S, ¢(a*a)=S, T, ¢(aa*)=T
and

U,+V,=29,(ac (a*aa*)) - 2¢(a o (a*aa*)) = S*S + T*T

we conclude that
d.((a*a)’)=U, > S*S = ¢(a*a)’ = ¢((a*a)?).
This shows that a*a € C and corapletes the proof. [

Remarks 3. (i) The set C is the same for both weak and strong
operator convergence. This follows because C is an algebra and because
Theorem 2.1 of [5] shows that the self-adjoint elements in C are the same
regardless of whether — denotes weak or strong convergence.

(i) A variant of Theorem 2 holds for the algebras of trace class
operators. Let % and & denote the sets of all trace class operators on
complex Hilbert spaces H and K, respectively. Then % and & are complex
Banach algebras under the respective trace norms | ||, and || ||l Let
¢:.%¥ > & be a *linear map which preserves squares, and for n =1, 2,..., let
¢,. ¥ — € be a positive linear map such that for every S € & with || S| < 1,
we have ||¢4,(S)| <1 and for every S€.% with ||S||, <1 we have
19.(8)le < a for some a independent of # and S. Then the set

{S€.7:[9.(S) —6(S)lle > 0,[4,(S* 0 §) - §(S* o §) - 0}

is a || -||s~closed Jordan *subalgebra of .&; if the ¢,’s are Schwarz maps and
¢ is a *homomorphism, then it is, in fact, a *subalgebra of .. This result
can be deduced from the corresponding result of Priestley (Theorem 3.1 of
[5]) since our Lemma 1 and the first two paragraphs of its proof hold
verbatim if we replace S(H) by the set of all trace class operators on H and
let — denote convergence in the trace norm.

Theorem 2 can be used to obtain the convergence of an approximation
method (g,) on a set larger than the one on which the convergence is known
a priori. Thus, if the convergence is known to hold on the 2m elements

640/34/3-3
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Ay yeers Qpys A © Qe af o a,,, then it holds on the J*-subalgebra (or on the
C*-subalgebra, if the ¢,’s are Schwarz) generated by a,,..., a,,. In practice, it
is even enough to assume convergence on (m + 1) elements as the following
result shows.

COROLLARY 4. Let a,,..,a, € A4 such that

¢n(aj) - ¢(aj)3 ./ = 1’---y m,

and

¢n (‘j aj?koaj)—»(ﬁ (}: aj?" oaj.) .
J=1 i=1

Then ¢,(a)— é(a) for all a belonging to the J*-subalgebra generated by

Qs Oy If all ¢, and ¢ are Schwarz maps, then ¢.(a)— ¢(a) for all a

belonging to the C*-subalgebra generated by a,....,a,,.

Proof. By Theorem 2, it is enough to show that
$.(aj o ay) > ¢(af o ay), j=1..m.

For all n, ¢,(aff oa;)—¢,(a;)*0¢,(a)>0 by Kadison’s (generalized)
inequality, and the proof will therefore be accomplished by demonstrating
that the sum 7 ,(4,(af o a;) — 4,(a)* o 9,(a;)) tends to zero. Note that
this sum is equal to

m

Y (9ulaf o a)) — gla)* o #(a))

j=

m
= Y 84(@)* 0 9,(a)) ~ ¢(a))* © §(a))).
i=1
Since 4,(a;) - ¢(a;), it follows that ¢,(a)* o d,(a;) - d(a)* o é(a;) for
j= L., m. This is obvious for the operator norm convergence, and for the
weak or strong operator convergence, we argue as follows. Let ¢,(a;) - ¢(a;)
weakly, j = l,..., m. For any x in the underlying Hilbert space,

LY 16,00) — @D +16,(@) — @) o)

j=1

<((X et apnx) )+ ( (X otar o aponx) )

j=1 j=1

— 3 Re(pl@) (1) 4,@)00) — X Re(6(a)*(9).6,(0) ().
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which tends to zero. Hence ¢,(a;)— ¢(a;) and ¢,(a;)* - ¢(a;)* strongly.
Thus, ¢,(a,)* o ¢,(a;) - d(a;)* o ¢(a;) strongly and the desired result
follows. 1

ExAMPLES 5. (i) Let A =B =M,, the C*-algebra of all k X k matrices
with complex entries, and let ¢ be the identity map. Let

0

where the 0’s occur on and below the main diagonal and the 1’s occur above
it. Then

k—1 k-2 .. 1 0
k—2 k-1 - 2 1
2a*ca=| i : P =)
1 2 e k—1 k-2
0 1 oo k=2 k-1

where we note that a; ;=a,,,_; ,,,_; It can be seen that the J*-subalgebra
generated by a in M, is

J= {[bi.j]: bij=byi1 jrs1-ihs

while the C*-subalgebra generated by a is all of M,. Hence, by Theorem 2,
if for n=1,2,.., ¢,: M, > M, is a positive linear map with ¢,(I) <7 (resp., a
Schwarz map), and ¢,(a)—a, ¢,(a* ca)—a* ca, then ¢,(b)— b for all
b€& J (resp., for all bE M,).

(ii) Let X be a compact Hausdorff topological space, and
A = B = C(X), the C*-algebra of all continuous complex-valued functions on
X with the supremum norm. For n=12,., let ¢,: C(X)—> C(X) be a
positive linear map and let ¢,(1)— ! uniformly on X. Let f,....,f,, € C(X)
separate the points of X and satisfy

8.(f3) = )

uniformly on X. Then ¢,(/) - f uniformly on X for all f& C(X).
This can be seen as follows. By considering ¢, = ¢,//4,(1)ll, we can
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assume without loss of generality that ¢,(1) < 1 for all n. For f€ C(X) and
x € X,

18, < 8u(1)(x) 8,011 () < 9,1/ 1°)(x),

by the classical Cauchy—Schwarz inequality. Hence each ¢, is a Schwarz
map. By Corollary 4, ¢,(f)—f uniformly for all fin the uniformly closed
conjugate-closed subalgebra generated by {L,f],...,f,,}. But it equals C(X),
by the Stone—~Weierstrass theorem. Hence the result.

In particular, if X is a bounded closed subset of the Euclidean space R"™,
then we can consider the coordinate functions

f;-(xl goory xm) = xj’ J = 1,..., m.

Or, if X is a closed subset of the m-dimensional torus T™ = {t = (e'1,..., e'%"):
0< 6; < 27}, then we can consider

i) =cos 8;, g,(t) = sin 6,, ji=L..,m

Note here that |/i]* + - + /" +] & + - +]gul* =m.

(iii) Let H be a complex Hilbert space and A = B = f(H). Consider a
*homomorphism ¢: S(H) — B(H). (For example, if U € f(H) is an isometry,
then ¢(T) = UTU* for T € B(H), is a *homomorphism.) Let ¢,,: S(H) — B(H)
be Schwarz maps and let S,,..., S,, € B(H) satisfy

0.(S)—=9(S), Jj=l..m,
and
$u(SFoS +--- +8F08,)8(SFoS + - +S5F0S,)

Assume that §,, S¥,..., S,,, S¥ do not have a common non-trivial invariant
subspace of H and that the C*-subalgebra C generated by §,..., S,, contains
a non-zero compact operator. Then

9.(S) — 8(S)

for all compact operators S in B(H). This follows from Corollary 4 since
being an irreducible C*-subalgebra of fA(H), C contains all compact
operators (Corollary 2, p. 18 of [1]).

To give specific, concrete cases, let H = L*([0, 1]). First consider the
Volterra integration operator

Ve = fod.  reL(o.1).
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Then the invariant subspaces of V are of the form {f€ L*(|0,1]): f=0
almost everywhere on [0,a]}, where 0 <a< 1. (See pp. 94-97 of [2].)
Hence V and V* have no non-trivial common invariant subspace. Also, V is
itself a compact operator. Hence we can take m =1 and S, = V in the above
result. Thus, if convergence holds on ¥ and V* o V, where

Vo V) ) on (L’f(t) dt) dy +J’: (f:f(t) dt) dy] ,

then it holds on all compact operators on L*([0, 1]).
Next, consider the multiplication operator

M(f)x)=xf(x), fEL*(0,1]),
and if g(x) = x for all x € [0, 1], let

= ([ sod)s  reLqo.p.

Then M and M?* have common non-trivial invariant subspaces since
M* = M. Also, since

T =[ v0d  seLi(o.1)

it follows that 7 and T* leave the subspace {f€ L*([0, 1]): [} f(£)dt=0=
{3 ¢f(¢) dt} invariant. We show that M and T do not have a common non-
trivial invariant subspace. Let F be a closed subspace of L*(|0, 1]) which is
invariant under both M and T. If there is some f, € F with [} f,(¢)dt #0,
then T(f,) is a non-zero multiple of g and since T(f,) € F, we have g € F.
But then for n =1, 2,.., M"(g) =g"*! are all in F so that F = L?*([0, 1]). On
the other hand, if [} f(¢)dt =0 for all f€ F, then for every fE€ F, M"(f) =
g"fE F so that [} t*f(¢t)dt =0 for all n=0, 1, 2,.... Hence f=0 and we see
that F= {0}.

Now since T is itself compact, the earlier result applies with m = 2,
S, =M and S, =T. Thus, if convergence holds on M, T and M? + T* o T,
where

(M + 7% > DY) =27 () + 5| @0 + 1)

then it holds on all compact operators on L*(]0, 1]).
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