Korovkin-Type Approximation on C*-Algebras

B. V. LIMAYE AND M. N. N. NAMBOODIRI

Department of Mathematics, Indian Institute of Technology, Powai, Bombay-400076, India

Communicated by G. G. Lorentz

Received August 6, 1980

THEOREM: Let A and B be complex C^* -algebras with identities l_A and l_B , respectively. Let (ϕ_n) be a sequence of positive linear maps with $\phi_n(1_A) \leq l_B$ from A to B, and ϕ a C^* -homomorphism from A to B. Then $C = \{a \in A : \phi_n(a) \to \phi(a), \phi_n(a^* \circ a) \to \phi(a^* \circ a)\}$ is a norm-closed *subspace of A and is closed under the Jordan product $a \circ b = (ab + ba)/2$ in A. If all ϕ_n and ϕ are Schwarz maps, then C is, in fact, a C*-subalgebra of A. Here \to denotes the operator norm convergence, or the weak operator convergence, or the strong operator convergence. A modification of this theorem for convergence in the trace norm is also considered. Various examples are given to illustrate the theorem.

For a complex C^* -algebra A with identity 1_A and a sequence (ϕ_n) of positive linear maps from A to A with $\phi_n(1_A) \leq 1_A$, Priestley proved in [5] that the set

$$\{a \in A: \phi_n(a) \to a, \phi_n(a^2) \to a^2, \phi_n(a^* \circ a) \to a^* \circ a\}$$

is a J^* -subalgebra of A (i.e., a norm-closed *subspace of A which is closed under the Jordan product $a \circ b = (ab + ba)/2$), where \rightarrow denotes convergence in the operator norm topology, or in the weak or strong operator topologies. Later, Robertson proved in [6] that if each ϕ_n is a Schwarz map (i.e., $\phi_n(a)^* \phi_n(a) \leq \phi_n(a^*a)$ for all $a \in A$), then the set

$$\{a \in A: \phi_n(a) \to a, \phi_n(a^*a) \to a^*a, \phi_n(aa^*) \to aa^*\}$$

is, in fact, a C^* -subalgebra of A, where \rightarrow denotes the operator norm convergence.

The purpose of the present paper is to improve (i) Priestley's result by dropping the condition $\phi_n(a^2) \rightarrow a^2$ in it, and also (ii) Robertson's result by replacing the conditions $\phi_n(a^*a) \rightarrow a^*a$, $\phi_n(aa^*) \rightarrow aa^*$ in it by the condition $\phi_n(a^* \circ a) \rightarrow a^* \circ a$. Our results are deduced from a preliminary theorem of Priestley which we shall quote later.

Also, we shall work in a more general situation. Throughout this note, A and B will denote complex C^* -algebras with identities 1_A and 1_B , respectively. A *linear map $\phi: A \to B$ is called a C^* -homomorphism if $\phi(a \circ b) = \phi(a) \circ \phi(b)$ for all a, b in A. C^* -homomorphisms are important because they preserve the quantum mechanical properties of the C^* -algebras. We consider an approximation of a C^* -homomorphism $\phi: A \to B$ by a sequence of positive linear maps $\phi_n: A \to B$ satisfying $\phi_n(1_A) \leq 1_B$. Unless otherwise stated, \to will denote convergence in the operator norm topology, or in the weak or strong operator topologies.

We begin by proving a convergence result for the C*-algebra $\beta(H)$ of all bounded operators on a complex Hilbert space H.

LEMMA 1. Let (S_n) , (T_n) , (U_n) and (V_n) be sequences in $\beta(H)$ such that for all n,

 $S_n^*S_n \leq U_n$ and $T_n^*T_n \leq V_n$.

If $S, T \in \beta(H)$ and

 $S_n \to S, \qquad T_n \to T, \qquad U_n + V_n \to S^*S + T^*T,$

then

$$U_n \to S^*S$$
 and $V_n \to T^*T$,

where \rightarrow denotes either the operator norm convergence or the weak operator convergence.

If \rightarrow denotes the strong operator convergence, then this result is false in general, but remains true in the following two special cases: (i) S_n and T_n are self-adjoint for all n, (ii) $T_n^* = S_n$ for all n.

Proof. For all n,

$$(U_n - S_n^* S_n) + (V_n - T_n^* T_n) = (U_n + V_n) - (S^* S + T^* T) - (S_n^* S_n - S^* S) - (T_n^* T_n - T^* T).$$

If we show that $S_n^*S_n \to S^*S$ and $T_n^*T_n \to T^*T$, then the right side of the above equality tends to zero. But for each *n* the left side is the sum of two positive operators so that $U_n - S_n^*S_n \to 0$ and $V_n - T_n^*T_n \to 0$; i.e., $U_n \to S^*S$ and $V_n \to T^*T$.

If \rightarrow denotes the operator norm convergence, then since $S_n \rightarrow S$ and $T_n \rightarrow T$ it is obvious that $S_n^* S_n \rightarrow S^* S$ and $T_n^* T_n \rightarrow T^* T$.

Let, now, \rightarrow denote the weak operator convergence. Fix $x \in H$. Then

$$\begin{split} \|S_n(x) - S(x)\|^2 + \|T_n(x) - T(x)\|^2 \\ &= \langle (S_n^*S_n + T_n^*T_n)(x), x \rangle + \langle (S^*S + T^*T)(x), x \rangle \\ &- 2 \operatorname{Re}\langle S(x), S_n(x) \rangle - 2 \operatorname{Re}\langle T(x), T_n(x) \rangle \\ &\leqslant \langle (U_n + V_n)(x), x \rangle + \langle (S^*S + T^*T)(x), x \rangle \\ &- 2 \operatorname{Re}\langle S(x), S_n(x) \rangle - 2 \operatorname{Re}\langle T(x), T_n(x) \rangle, \end{split}$$

which tends to zero. Hence $||S_n(x) - S(x)|| \to 0$ and $||T_n(x) - T(x)|| \to 0$. Now,

$$\langle S_n^*S_n(x), x \rangle = \|S_n(x)\|^2 \to \|S(x)\|^2 = \langle S^*S(x), x \rangle.$$

Since $x \in H$ is arbitrary, we see that $S_n^*S_n \to S^*S$, and similarly $T_n^*T_n \to T^*T$.

If \rightarrow denotes the strong operator convergence, the statement of the lemma is false as the following example shows. Let $H = l^2$, the Hilbert space of square-summable complex sequences, and L denote the unilateral left shift operator on l^2 . Define $S_n = I - L^n$, $T_n = I + L^n$, $U_n = S_n^* S_n$ and $V_n = T_n^* T_n$. Then it can be readily seen that $S_n \rightarrow I$, $T_n \rightarrow I$ and $U_n + V_n =$ $2(I + L^{*n}L^n) \rightarrow 2I$ strongly, but U_n does not tend to I strongly. If, however, all S_n and T_n are self-adjoint, then clearly $S_n^* S_n = S_n^2 \rightarrow S^2 = S^*S$ and similarly $T_n^* T_n \rightarrow T^*T$. Again, if $T_n^* = S_n$ for each n, then $S_n^* S_n = T_n S_n \rightarrow$ $TS = S^*S$ and $T_n^* T_n = S_n T_n \rightarrow ST = T^*T$, and we are back in business.

We now state the preliminary theorem of Priestley from which our results will be deduced. Although he proved it for the special case A = B and ϕ equal to the identity map, his proof works equally well in the general situation.

THEOREM (Priestley [5, Theorems 1.1 and 2.1]). The set

$$J = \{a \in A \colon a^* = a, \phi_n(a) \to \phi(a), \phi_n(a^2) \to \phi(a^2)\}$$

is a Jordan subalgebra of self-adjoint elements of A.

THEOREM 2. The set

$$C = \{a \in A : \phi_n(a) \to \phi(a), \phi_n(a^* \circ a) \to \phi(a^* \circ a)\}$$

is a J^* -subalgebra of A.

If ϕ and all ϕ_n are Schwarz maps, then C is, in fact, a C*-subalgebra of A.

Proof. To show that C is a J^* -subalgebra of A, it is enough to prove, by Priestley's theorem, that C = J + iJ. Since C obviously contains J + iJ, we only have to show that if $a \in C$ and $a = a_1 + ia_2$ with $a_1^* = a_1, a_2^* = a_2$, then $a_1, a_2 \in J$.

For all *n*, let $S_n = \phi_n(a_1)$, $T_n = \phi_n(a_2)$, $U_n = \phi_n(a_1^2)$ and $V_n = \phi_n(a_2^2)$. Then, by Kadison's inequality [3],

$$S_n^*S_n = S_n^2 = \phi_n(a_1)^2 \leq \phi_n(a_1^2) = U_n$$

and similarly, $T_n^*T_n \leq V_n$. Also, since $a \in C$ and C is *closed, we see that $S_n \rightarrow \phi(a_1) = S$, $T_n \rightarrow \phi(a_2) = T$, and

$$U_n + V_n = \phi_n(a_1^2 + a_2^2) = \phi_n(a^* \circ a) \to \phi(a^* \circ a) = S^*S + T^*T.$$

Hence, by Lemma 1,

$$U_n = \phi_n(a_1^2) \to S^*S = \phi(a_1)^2 = \phi(a_1^2)$$

and

$$V_n = \phi_n(a_2^2) \to T^*T = \phi(a_2)^2 = \phi(a_2^2).$$

Thus, $a_1, a_2 \in J$ so that C = J + iJ is a J^* -subalgebra of A.

Next, let ϕ and ϕ_n be Schwarz maps. Since ϕ is also a C^* -homomorphism, it follows that (Corollary 1, p. 270 of [4]) ϕ is, in fact, a *homomorphism. To show that C is a C*-subalgebra of A, it is enough to prove that if $a_1, a_2 \in C$ with $a_1^* = a_1$ and $a_2^* = a_2$, then $a_1a_2 \in C$. Let $a = a_1 + ia_2$. Since

$$2a_1a_2 = (2a_1 \circ a_2 + i(a_1^2 + a_2^2 - a^*a))$$

and since C is a J^* -subalgebra, we need only prove that $a^*a \in C$.

For all *n*, let $S_n = T_n^* = \phi_n(a)$, $U_n = \phi_n(a^*a)$ and $V_n = \phi_n(aa^*)$. Since ϕ_n is Schwarz, $S_n^*S_n \leq U_n$ and $T_n^*T_n \leq V_n$. Now $a \in C$ since *C* is a J^* subalgebra. Thus, $S_n \to \phi(a) = S$, $T_n \to \phi(a^*) = T$ and

$$U_n + V_n = \phi_n(a^*a + aa^*) = 2\phi_n(a^* \circ a) \rightarrow 2\phi(a^* \circ a)$$
$$= 2\phi(a^*) \circ \phi(a) = S^*S + T^*T.$$

Hence, by Lemma 1,

$$\phi_n(a^*a) = U_n \to S^*S = \phi(a)^* \phi(a) = \phi(a^*a),$$

and

$$\phi_n(aa^*) = V_n \to T^*T = \phi(a) \ \phi(a)^* = \phi(aa^*).$$

Again, since a belongs to the J^* -subalgebra C, we see that

$$a^*aa^* = 2a^* \circ (a^* \circ a) - (a^* \circ a^*) \circ a$$

as well as $a \circ (a^*aa^*)$ belong to C. Therefore, $\phi_n(a \circ (a^*aa^*)) \rightarrow \phi(a \circ (a^*aa^*))$. But

$$2a \circ (a^*aa^*) = (a^*a)^2 + (aa^*)^2.$$

Now, letting $S_n = \phi_n(a^*a)$, $T_n = \phi_n(aa^*)$, $U_n = \phi_n((a^*a)^2)$ and $V_n = \phi_n((aa^*)^2)$ in Lemma 1, and noting that $S_n \to \phi(a^*a) = S$, $T_n \to \phi(aa^*) = T$ and

$$U_n + V_n = 2\phi_n(a \circ (a^*aa^*)) \to 2\phi(a \circ (a^*aa^*)) = S^*S + T^*T$$

we conclude that

$$\phi_n((a^*a)^2) = U_n \to S^*S = \phi(a^*a)^2 = \phi((a^*a)^2).$$

This shows that $a^*a \in C$ and completes the proof.

Remarks 3. (i) The set C is the same for both weak and strong operator convergence. This follows because C is an algebra and because Theorem 2.1 of [5] shows that the self-adjoint elements in C are the same regardless of whether \rightarrow denotes weak or strong convergence.

(ii) A variant of Theorem 2 holds for the algebras of trace class operators. Let \mathscr{S} and \mathscr{C} denote the sets of all trace class operators on complex Hilbert spaces H and K, respectively. Then \mathscr{S} and \mathscr{C} are complex Banach algebras under the respective trace norms $\| \|_{\mathscr{S}}$ and $\| \|_{\mathscr{E}}$. Let $\phi: \mathscr{S} \to \mathscr{C}$ be a *linear map which preserves squares, and for n = 1, 2, ..., let $\phi_n: \mathscr{S} \to \mathscr{C}$ be a positive linear map such that for every $S \in \mathscr{S}$ with $\|S\| \leq 1$, we have $\|\phi_n(S)\| \leq 1$ and for every $S \in \mathscr{S}$ with $\|S\|_{\mathscr{S}} \leq 1$ we have $\|\phi_n(S)\|_{\mathscr{E}} \leq \alpha$ for some α independent of n and S. Then the set

$$\{S \in \mathscr{S} : \|\phi_n(S) - \phi(S)\|_{\mathscr{E}} \to 0, \|\phi_n(S^* \circ S) \to \phi(S^* \circ S)\|_{\mathscr{E}} \to 0\}$$

is a $\|\cdot\|_{\mathscr{S}}$ -closed Jordan *subalgebra of \mathscr{S} ; if the ϕ_n 's are Schwarz maps and ϕ is a *homomorphism, then it is, in fact, a *subalgebra of \mathscr{S} . This result can be deduced from the corresponding result of Priestley (Theorem 3.1 of [5]) since our Lemma 1 and the first two paragraphs of its proof hold verbatim if we replace $\beta(H)$ by the set of all trace class operators on H and let \rightarrow denote convergence in the trace norm.

Theorem 2 can be used to obtain the convergence of an approximation method (ϕ_n) on a set larger than the one on which the convergence is known a priori. Thus, if the convergence is known to hold on the 2m elements

 $a_1,...,a_m, a_1^* \circ a_1,..., a_m^* \circ a_m$, then it holds on the *J**-subalgebra (or on the *C**-subalgebra, if the ϕ_n 's are Schwarz) generated by $a_1,...,a_m$. In practice, it is even enough to assume convergence on (m + 1) elements as the following result shows.

COROLLARY 4. Let $a_1, ..., a_m \in A$ such that

$$\phi_n(a_j) \rightarrow \phi(a_j), \qquad j=1,...,m,$$

and

$$\phi_n\left(\sum_{j=1}^m a_j^*\circ a_j\right)\to \phi\left(\sum_{j=1}^m a_j^*\circ a_j\right).$$

Then $\phi_n(a) \rightarrow \phi(a)$ for all a belonging to the J*-subalgebra generated by $a_1,..., a_m$. If all ϕ_n and ϕ are Schwarz maps, then $\phi_n(a) \rightarrow \phi(a)$ for all a belonging to the C*-subalgebra generated by $a_1,..., a_m$.

Proof. By Theorem 2, it is enough to show that

$$\phi_n(a_i^* \circ a_j) \rightarrow \phi(a_i^* \circ a_j), \qquad j = 1, ..., m.$$

For all n, $\phi_n(a_j^* \circ a_j) - \phi_n(a_j)^* \circ \phi_n(a_j) \ge 0$ by Kadison's (generalized) inequality, and the proof will therefore be accomplished by demonstrating that the sum $\sum_{j=1}^{m} (\phi_n(a_j^* \circ a_j) - \phi_n(a_j)^* \circ \phi_n(a_j))$ tends to zero. Note that this sum is equal to

$$\sum_{j=1}^{m} (\phi_n(a_j^* \circ a_j) - \phi(a_j)^* \circ \phi(a_j))$$
$$- \sum_{j=1}^{m} (\phi_n(a_j)^* \circ \phi_n(a_j) - \phi(a_j)^* \circ \phi(a_j))$$

Since $\phi_n(a_j) \to \phi(a_j)$, it follows that $\phi_n(a_j)^* \circ \phi_n(a_j) \to \phi(a_j)^* \circ \phi(a_j)$ for j = 1, ..., m. This is obvious for the operator norm convergence, and for the weak or strong operator convergence, we argue as follows. Let $\phi_n(a_j) \to \phi(a_j)$ weakly, j = 1, ..., m. For any x in the underlying Hilbert space,

$$\frac{1}{2} \sum_{j=1}^{m} \left(\| (\phi_n(a_j) - \phi(a_j))(x) \|^2 + \| (\phi_n(a_j) - \phi(a_j))^*(x) \|^2 \right) \\ \leq \left\langle \left(\sum_{j=1}^{m} \phi_n(a_j^* \circ a_j)(x), x \right) \right\rangle + \left\langle \left(\sum_{j=1}^{m} \phi(a_j^* \circ a_j)(x), x \right) \right\rangle \\ - \sum_{j=1}^{m} \operatorname{Re} \langle \phi(a_j)(x), \phi_n(a_j)(x) \rangle - \sum_{j=1}^{m} \operatorname{Re} \langle \phi(a_j)^*(x), \phi_n(a_j)^*(x) \rangle,$$

242

which tends to zero. Hence $\phi_n(a_j) \to \phi(a_j)$ and $\phi_n(a_j)^* \to \phi(a_j)^*$ strongly. Thus, $\phi_n(a_j)^* \circ \phi_n(a_j) \to \phi(a_j)^* \circ \phi(a_j)$ strongly and the desired result follows.

EXAMPLES 5. (i) Let $A = B = M_k$, the C*-algebra of all $k \times k$ matrices with complex entries, and let ϕ be the identity map. Let

$$a = \begin{bmatrix} 0 & & & \\ 0 & 1 & & \\ & \ddots & & \\ 0 & 0 & & \\ & & & 0 \end{bmatrix},$$

where the 0's occur on and below the main diagonal and the 1's occur above it. Then

$$2a^* \circ a = \begin{bmatrix} k-1 & k-2 & \cdots & 1 & 0 \\ k-2 & k-1 & \cdots & 2 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 2 & \cdots & k-1 & k-2 \\ 0 & 1 & \cdots & k-2 & k-1 \end{bmatrix} = [a_{i,j}],$$

where we note that $a_{i,j} = a_{k+1-j,k+1-i}$. It can be seen that the J*-subalgebra generated by a in M_k is

$$J = \{ [b_{i,j}] : b_{i,j} = b_{k+1-j,k+1-i} \},\$$

while the C*-subalgebra generated by a is all of M_k . Hence, by Theorem 2, if for $n = 1, 2, ..., \phi_n: M_k \to M_k$ is a positive linear map with $\phi_n(I) \leq I$ (resp., a Schwarz map), and $\phi_n(a) \to a$, $\phi_n(a^* \circ a) \to a^* \circ a$, then $\phi_n(b) \to b$ for all $b \in J$ (resp., for all $b \in M_k$).

(ii) Let X be a compact Hausdorff topological space, and A = B = C(X), the C*-algebra of all continuous complex-valued functions on X with the supremum norm. For $n = 1, 2, ..., let \phi_n: C(X) \to C(X)$ be a positive linear map and let $\phi_n(1) \to 1$ uniformly on X. Let $f_1, ..., f_m \in C(X)$ separate the points of X and satisfy

$$\phi_n(f_j) \to f_j,$$

 $\phi_n(|f_1|^2 + \dots + |f_m|^2) \to |f_1|^2 + \dots + |f_m|^2$

uniformly on X. Then $\phi_n(f) \to f$ uniformly on X for all $f \in C(X)$.

This can be seen as follows. By considering $\phi'_n = \phi_n/||\phi_n(1)||$, we can

assume without loss of generality that $\phi_n(1) \leq 1$ for all *n*. For $f \in C(X)$ and $x \in X$,

$$|\phi_n(f)(x)|^2 \leq \phi_n(1)(x) \phi_n(|f|^2(x)) \leq \phi_n(|f|^2)(x),$$

by the classical Cauchy-Schwarz inequality. Hence each ϕ_n is a Schwarz map. By Corollary 4, $\phi_n(f) \rightarrow f$ uniformly for all f in the uniformly closed conjugate-closed subalgebra generated by $\{1, f_1, ..., f_m\}$. But it equals C(X), by the Stone-Weierstrass theorem. Hence the result.

In particular, if X is a bounded closed subset of the Euclidean space R^m , then we can consider the coordinate functions

$$f_j(x_1,...,x_m) = x_j, \qquad j = 1,...,m.$$

Or, if X is a closed subset of the *m*-dimensional torus $T^m = \{t = (e^{i\theta_1}, ..., e^{i\theta_m}): 0 \le \theta_j < 2\pi\}$, then we can consider

$$f_i(t) = \cos \theta_i, g_i(t) = \sin \theta_i, \qquad j = 1,..., m.$$

Note here that $|f_1|^2 + \cdots + |f_m|^2 + |g_1|^2 + \cdots + |g_m|^2 = m$.

(iii) Let *H* be a complex Hilbert space and $A = B = \beta(H)$. Consider a *homomorphism $\phi: \beta(H) \to \beta(H)$. (For example, if $U \in \beta(H)$ is an isometry, then $\phi(T) = UTU^*$ for $T \in \beta(H)$, is a *homomorphism.) Let $\phi_n: \beta(H) \to \beta(H)$ be Schwarz maps and let $S_1, ..., S_m \in \beta(H)$ satisfy

$$\phi_n(S_j) \rightarrow \phi(S_j), \qquad j = 1, ..., m,$$

and

$$\phi_n(S_1^* \circ S_1 + \dots + S_m^* \circ S_m) \to \phi(S_1^* \circ S_1 + \dots + S_m^* \circ S_m).$$

Assume that $S_1, S_1^*, ..., S_m, S_m^*$ do not have a common non-trivial invariant subspace of H and that the C^* -subalgebra C generated by $S_1, ..., S_m$ contains a non-zero compact operator. Then

$$\phi_n(S) \to \phi(S)$$

for all compact operators S in $\beta(H)$. This follows from Corollary 4 since being an irreducible C*-subalgebra of $\beta(H)$, C contains all compact operators (Corollary 2, p. 18 of [1]).

To give specific, concrete cases, let $H = L^2([0, 1])$. First consider the Volterra integration operator

$$V(f)(x) = \int_0^x f(t) \, dt, \qquad f \in L^2([0, 1]).$$

Then the invariant subspaces of V are of the form $\{f \in L^2([0, 1]): f = 0 \text{ almost everywhere on } [0, \alpha]\}$, where $0 \le \alpha \le 1$. (See pp. 94–97 of [2].) Hence V and V* have no non-trivial common invariant subspace. Also, V is itself a compact operator. Hence we can take m = 1 and $S_1 = V$ in the above result. Thus, if convergence holds on V and $V^* \circ V$, where

$$V^* \circ V(f)(x) = \frac{1}{2} \left[\int_0^x \left(\int_y^1 f(t) \, dt \right) dy + \int_x^1 \left(\int_0^y f(t) \, dt \right) \, dy \right],$$

then it holds on all compact operators on $L^2([0, 1])$.

Next, consider the multiplication operator

$$M(f)(x) = xf(x), \qquad f \in L^2([0, 1]),$$

and if g(x) = x for all $x \in [0, 1]$, let

$$T(f) = \left(\int_0^1 f(t) \, dt \right) g, \qquad f \in L^2([0, 1]).$$

Then M and M^* have common non-trivial invariant subspaces since $M^* = M$. Also, since

$$T^*(f)(x) = \int_0^1 tf(t) \, dt, \qquad f \in L^2([0, 1])$$

it follows that T and T* leave the subspace $\{f \in L^2([0, 1]): \int_0^1 f(t) dt = 0 = \int_0^1 tf(t) dt\}$ invariant. We show that M and T do not have a common nontrivial invariant subspace. Let F be a closed subspace of $L^2([0, 1])$ which is invariant under both M and T. If there is some $f_0 \in F$ with $\int_0^1 f_0(t) dt \neq 0$, then $T(f_0)$ is a non-zero multiple of g and since $T(f_0) \in F$, we have $g \in F$. But then for $n = 1, 2, ..., M^n(g) = g^{n+1}$ are all in F so that $F = L^2([0, 1])$. On the other hand, if $\int_0^1 f(t) dt = 0$ for all $f \in F$, then for every $f \in F$, $M^n(f) = g^n f \in F$ so that $\int_0^1 t^n f(t) dt = 0$ for all n = 0, 1, 2, Hence f = 0 and we see that $F = \{0\}$.

Now since T is itself compact, the earlier result applies with m = 2, $S_1 = M$ and $S_2 = T$. Thus, if convergence holds on M, T and $M^2 + T^* \circ T$, where

$$(M^{2} + T^{*} \circ T)(f)(x) = x^{2}f(x) + \frac{x}{2}\int_{0}^{1} (tf(t) + \frac{1}{6}f(t)) dt,$$

then it holds on all compact operators on $L^2([0, 1])$.

LIMAYE AND NAMBOODIRI

References

- 1. W. ARVESON, "An Invitation to C*-algebras," Springer-Verlag, New York, 1976.
- 2. P. R. HALMOS, "A Hilbert Space Problem Book," Springer-Verlag, New York, 1970.
- 3. R. V. KADISON, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. 56 (1952), 494-503.
- 4. T. W. PALMER, Characterizations of *homomorphisms and expectations, *Proc. Amer.* Math. Soc. 46 (1974), 265-272.
- 5. W. M. PRIESTLEY, A noncommutative Korovkin theorem, J. Approx. Theory 16 (1976), 251-260.
- A. G. ROBERTSON, A Korovkin theorem for Schwarz maps on C*-algebras, Math. Z. 56 (1977), 205-207.
- 7. E. STØRMER, Positive linear maps of C*-algebras, in "Springer Lecture Notes in Physics No. 29" pp. 85–106, Springer-Verlag, New York, 1974.